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A catalysed O/C-carboxyl rearrangement generates the all-carbon stereogenic centre in phenyl 1,3-
dimethyl-5-methoxy-2-oxoindoline-3-carboxylate (up to 57% ee). Crystallisation and removal of racemic
crystals enhance the ee to 95%. The X-ray crystal structure of the cobalt metallocene–pyrrolidinopyridine
nucleophilic catalyst employed is reported.

� 2009 Elsevier Ltd. All rights reserved.
N
Me

RO
NMe

Me

H

2a R = CONHMe (-)-physostigmine
2b R = CONHPh (-)-phenserine
2c R = Me (-)- esermethole

N
H

MeO

Me
N

O

1 (-)-horsfiline

Figure 1. Representative oxindole and pyrroloindoline alkaloids containing an all-
carbon quaternary stereogenic centre.
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Scheme 1. O/C-Carboxyl rearrangement for the synthesis of quaternary stereogenic
centres.
A number of oxindole-based naturally occurring alkaloids con-
tain an all-carbon quaternary stereogenic centre at C-3. Examples
include (�)-horsifiline 11a (Fig. 1) and more complex compounds
containing additional stereogenic centres such as gelsemine,1b

welwitindolinone A1c and spirotryprostatins A1d and B.1e Related
pyrroloindoline alkaloids containing a C-3 quaternary stereogenic
centre that also display biological activity have long attracted the
interest of synthetic chemists. In addition to (�)-physostigmine
2a2a and its congeners (�)-phenserine 1b2b and (�)-esermethole
1c,2a related examples include (�)-pseudophrynaminol2c and (�)-
flustramine B.2d

Asymmetric catalysis may be used to control the absolute con-
figuration at C-3 during the synthesis of these natural products,
with methods employed ranging from palladium-catalysed Heck3a

and molybdenum-catalysed allylic alkylation reactions,3b to imini-
um ion catalysis.2d Chiral 4-aminopyridine-based nucleophilic cat-
alysts have been extensively developed in recent years for
enantioselective acyl and carboxyl transfer reactions.4 Although
the focus of this research has been largely on chiral secondary alco-
hol kinetic resolution, success has also been achieved with enan-
tioselective O/C-carboxyl transfer reactions for the synthesis of
quaternary stereogenic centres (Scheme 1).5,6

To this end we recently reported the synthesis of a cobalt metal-
locene–pyrrolidinopyridine nucleophilic catalyst 3, available in
three steps (22% unoptimised yield) from commercially available
(S,S)-hexane-2,5-diol (Scheme 2).7 Use of 1 mol % of this catalyst
resulted in the quantitative O/C-carboxyl rearrangement of azlac-
tone-derived enol carbonates in up to 76% ee. We now report on
the application of 3 to the generation of the C-3 stereogenic centre
of a 3-methyl-5-methoxyoxindole building block that has the po-
tential to be employed in the synthesis of natural products and re-
lated compounds.
ll rights reserved.

: +44 0603 592003.
ards).
Starting with commercially available N-methyl-4-methoxyani-
line 4, oxindole 5 was synthesised using a literature procedure
(Scheme 3).8 Subsequent deprotonation with potassium hexa-
methyldisilazide followed by chloroformate addition gave enol
carbonates 6a–d.9 The very low yield of 6c was mainly due to
the preferential formation of 3-benzyl-1,3-dimethyl-5-methoxy-
2-oxoindoline.2a This was also the major product when triethyl-
amine or sodium hydride was used with benzyl chloroformate,
these reactions also resulted in a very low yield (<2%) of 6c.

Addition of 5 mol % of catalyst 3 to 6a in toluene/dichlorometh-
ane (the latter solvent being required to completely solubilise the
substrate) resulted in clean rearrangement and isolation of 7a in
48% ee (Table 1, entry 1). Repetition of the reaction at 0 �C resulted
in no reaction (entry 2) and the use of dichloromethane alone also
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Scheme 2. Chiral nucleophilic catalyst 3 and the mechanism of chirality transfer to
the pyridine nitrogen environment of 3.
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gave an ee of 48% (entry 3).10 This increased to 57% in THF, albeit
with a significantly longer reaction time and lower yield (entry
4). The replacement of the phenyl carbonate 6a with the p-nitro-
Table 1
Rearrangement reactions of enol carbonates 6 with nucleophilic catalyst 3a

Entry Substrate/
product

Mol %
3

Solvent Time
(h)

Yieldb

(%)
eec

(%)

1 6a/7a 5 PhMe/
CH2Cl2

e
24 83 48

2d 6a/7a 5 PhMe/
CH2Cl2

e
36 0 —

3 6a/7a 5 CH2Cl2 18 50 48
4 6a/7a 5 THF 72 43 57
5 6b/7b 5 PhMe/

CH2Cl2
f

48 70 5

6 6c/7c 5 PhMe/
CH2Cl2

f
36 78 5

7 6d/7d 10 PhMe 24 61 50
8 6d/7d 10 Hexane/

CH2Cl2
f

48 48 15

9 6d/7d 3 THF 24 43 7

a All reactions at 25 �C unless otherwise stated.
b After isolation by chromatography.
c Determined by HPLC.
d At 0 �C.
e 5:2 Ratio.
f 4:1 Ratio.
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Scheme 3. Synthesis and rearrangement of oxindole-derived enol carbonates 6a–d.
phenyl and benzyl congeners 6b and 6c resulted in essentially no
enantioselectivity (entries 5 and 6). In contrast the trichloro-tert-
butyl analogue 6d gave a 50% ee in toluene (with 10 mol % 3, entry
7), but much lower enantioselectivities in hexane/dichlorometh-
ane or THF (entries 8 and 9).11 Following lithium hydroxide-med-
iated hydrolysis of enantioenriched esters 7a and 7d, the resulting
acids were determined to contain the same major enantiomer by
chiral HPLC analysis. The absolute configuration of the major enan-
tiomer of 7a and 7d is tentatively assigned as S by comparison with
the major enantiomer resulting from the rearrangement of azlac-
tone-derived enol carbonates with catalyst 3.7 Other catalysts ap-
plied to the rearrangement of enol carbonates derived from both
azlactones and oxindoles have resulted in the same sense of
enantioselectivity.5a–d

Recrystallisation of 7a (48% ee) from hexane/i-PrOH gave crys-
talline racemic 7a and a mother liquor consisting almost exclu-
sively of the major enantiomer (Scheme 4).12 The use of
preferential crystallisation to separate the enantiomers of a race-
mic compound (as opposed to a racemic mixture that forms a con-
glomerate) has recently been demonstrated, and requires the use
of an enantioenriched mixture of enantiomers.13 Thus, although
the enantioselectivity of the O/C-carboxyl rearrangement is rela-
tively modest, this crystallisation procedure provides a highly sca-
lemic intermediate for the synthesis of alkaloids of general
structure 2.

The X-ray crystal structure of 314 (Fig. 2) reveals the operation
of the chiral relay effect as represented in Scheme 2. That this con-
formation, with respect to rotation about the pyridine–cyclopenta-
dienyl bond, is maintained in solution has previously been
established by NMR (GOSEY) analysis.7 The deviation from co-pla-
narity of the pyridine and cyclopentadienyl rings is 38�, which is at
least in part due to the avoidance of interaction between the cyclo-
Recryst.
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Scheme 4. Enantiomeric enrichment of 7a.

Figure 2. ORTEP representation of the X-ray crystal structure of 3. Key bond angles
and torsions: C(39)–N(2)–C(42) = 108.3(4)�, C(39)–N(2)–C(38) = 118.4(4)�, C(38)–
N(2)–C(42) = 117.7(4)�, C(30)–C(29)–C(34)–C(38) = �37.6(8)�, C(34)–C(38)–N(2)–
C(39) = 168.2(5)�, C(34)–C(38)–N(2)–C(42) = �58.3(7)�.
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pentadienyl and pyrrolidine moieties. The latter adopts an enve-
lope conformation with the out-of-plane carbon [C(42)] adjacent
to the cyclopentadienyl group, towards which is projected an
equatorial hydrogen. The pyridine carbon C(38) is bent 36� out of
the plane defined by C(42)–N(2)–C(39) which is indicative of some
sp3 character in the pyrrolidine nitrogen. This deviation from the
sp2 pyrrolidine nitrogen of 4-pyrrolidinopyridine (PPY), and the
resulting reduction in the magnitude of the nN?p�

ðC@CÞ interaction,
accounts for the reduction in the activity of 3 compared to PPY and
4-dimethylaminopyridine (DMAP) as catalysts in alcohol acetyla-
tion reactions.7,15 The steric impediment of a cyclobutadiene-ap-
pended phenyl group may also be a factor. However, it must be
stressed that 3 is still a very active nucleophilic catalyst and the
relatively high catalyst loading of 5 mol % required for the rear-
rangement of oxindole-derived enol carbonates is a consequence
of the low activity and challenging nature of this class of substrate.

In summary, we have demonstrated that the synthetically
accessible chiral nucleophilic catalyst 3 is applicable to the asym-
metric rearrangement of an oxindole-derived enol carbonate, and
in particular to the generation of highly scalemic phenyl 1,3-di-
methyl-5-methoxy-2-oxoindoline-3-carboxlate following enant-
ioenrichment by recrystallisation. The utilisation of this building
block for the synthesis of indole alkaloids and related compounds
is currently in progress.
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